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The cross-correlation function between the target and a model electron density,

denoted as the C map, has been crystallographically characterized. In particular,

a study of its interatomic vectors and of their relation with the Patterson vectors

has been undertaken. Since the C map is not available during the phasing

process, the C0 map, its centric modification, is considered. It may be computed

at any stage of the phasing process and shows properties that are very useful for

the crystal structure determination process. It has been combined with the

implication transformation method and with vector-superposition techniques

for performing the Patterson deconvolution and obtaining an initial model for

dual-space recycling. While Patterson methods are traditionally considered to

be more efficient for structures containing heavy atoms, the C map extends their

potential to light-atom structures (i.e. containing atoms not heavier than O).

1. Notation

N, Np: number of atoms in the unit cell of the target structure

(the one we want to phase) and of the model structure,

respectively.

F;E;Fp;Ep: structure factor and normalized structure factors

of the target and of the model structure, respectively.P
N ¼

PN
j¼1 f 2

j ;
P

Np
¼
PNp

j¼1 f 2
j : fj is the scattering factor of

the jth atom, thermal factor included.

IiðxÞ: modified Bessel function of order i.

D ¼ hcosð2�h�rÞi: the average is performed per resolution

shell.

�A ¼ Dð�Np
=�NÞ

1=2:
C � ðR;TÞ: symmetry operator. R and T are the rotation and

the translation matrix, respectively.

2. Introduction

In a recent paper (Carrozzini et al., 2010) the cross-correlation

function CðrÞ was crystallographically characterized. We

briefly recall its definition. Given two functions f ðxÞ and gðxÞ,

their cross-correlation function is defined by

CðyÞ ¼ f ðxÞ � gðxÞ ¼
Rþ1

�1

f �ðxÞgðxþ yÞ dx; ð1Þ

where the star indicates the complex conjugate. The cross

correlation is both associative and distributive but not

commutative: owing to the classical Wiener–Kinchin theorem,

it satisfies the relations

T½ f ðxÞ � gðxÞ� ¼ ½Tf ðxÞ��½TgðxÞ� ð2Þ

and

T½gðxÞ � f ðxÞ� ¼ ½TgðxÞ��½Tf ðxÞ�: ð3Þ

The right-hand sides of equations (2) and (3) are complex

conjugates.

The above definition was applied to the following two

functions: the electron density,

�ðrÞ ¼
PN

j¼1

�jðr� rjÞ ¼ ð1=VÞ
P

h

Fh expð�2�ih � rÞ; ð4Þ

(from now on referred to as the density of the target structure,

because we are interested in knowing this), and the model

density (presumed to be known),

�pðrÞ ¼
PNp

j¼1

�pj
ðr� r0jÞ ¼ ð1=VÞ

P

h

Fph expð�2�ih � rÞ: ð5Þ

�j and �pj
are atomic electron densities, the first centered on rj,

the second centered on r0j ¼ rj þ�rj. If Np/N is sufficiently

high and the �rj’s are sufficiently small, the two functions �ðrÞ
and �pðrÞ are highly correlated with each other. The target and

model structure are assumed to show the same space-group

symmetry.

According to equation (1) we have

CðuÞ ¼ �ðrÞ � �pðrÞ ¼
R

S

�ðrÞ�pðrþ uÞ dr ð6Þ

and, in accordance with relations (2) and (3),

CðuÞ ¼ ð1=VÞ
P

h

jFhFphj exp ið’h � ’phÞ expð�2�ih � uÞ; ð7Þ

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5015&bbid=BB36
http://crossmark.crossref.org/dialog/?doi=10.1107/S0108767312040469&domain=pdf&date_stamp=2012-11-14


where Fh ¼ jFhj expði’hÞ and Fph ¼ jFphj expði’phÞ are the

structure factors of �ðrÞ and �pðrÞ, respectively.

jFhFphj exp ið’h � ’phÞ is the Fourier coefficient of CðuÞ: since

it is a complex number, CðuÞ is acentric [CðuÞ is centric only

if both �ðrÞ and �pðrÞ are centric]. It was shown by Carrozzini

et al. (2010) that the space group of the C function is the

symmorphic variant of the space group of the target structure

(e.g. P222 as opposed to P212121).

If the model and target structures are correlated then:

(a) ’h ’ ’ph. Then the C map will show a peak at the origin,

the amplitude of which increases with the correlation:

Cð0Þ ¼ ð1=VÞ
P

h

jFhFphj exp ið’h � ’phÞ: ð8Þ

(b) If Np ! N and hj�rjji ! 0, then ’ph ! ’h and

CðuÞ ! PðuÞ, where PðuÞ is the Patterson function (Patterson,

1934a,b).

The map CðuÞ cannot be computed during the phasing

process, essentially because the ’h’s are unknown. Fortunately,

the approximating function C0ðuÞ, given by

C0ðuÞ ¼ ð1=VÞ
P

h

mhjFhFphj expð�2�ih � uÞ; ð9Þ

is easily computable. In equation (9) m ¼ hcosð’� ’pÞi

¼ I1ðXÞ=I0ðXÞ and X ¼ 2�AjEEpj=ð1� �
2
AÞ (Sim, 1959;

Srinivasan & Ramachandran, 1965; Read, 1986). C0ðuÞ is a

useful approximation to CðuÞ and shows remarkable proper-

ties: the Fourier coefficients of C0ðuÞ are real numbers, and

consequently the space group of C0ðuÞ is centric, so coinciding

with the Patterson space group (e.g., Pmmm if the space group

of the target is P212121).

It was observed by Carrozzini et al. (2010) that since both

�ðrÞ and �pðrÞ are non-negative definite functions, CðuÞ and

therefore C0ðuÞ are also non-negative definite. The map C0ðuÞ

may therefore be suitably modified and Fourier inverted, as in

the usual electron-density modification (EDM) procedures

(Cowtan, 1999; Abrahams, 1997; Abrahams & Leslie, 1996;

Refaat & Woolfson, 1993; Giacovazzo & Siliqi, 1997), so

leading to better estimates of the invariants ð’h � ’phÞ. The

first applications of the procedure showed that it is able to

drive to convergence sets of phases that are far away from the

correct values.

In this paper we suggest applying the C0 map to the

Patterson deconvolution process, with particular interest in its

integration with implication transformation (Simpson et al.,

1965; Pavelčı́k et al., 1992) and superposition methods

(Buerger, 1959; Richardson & Jacobson, 1987; Sheldrick,

1992).

Implication transformation and Patterson superposition

methods are traditionally applied to structures containing

heavy atoms. It has also been shown (Pavelcı́k, 1988; Pavelčı́k

& Pivovarcikova, 2002) that they may be successfully applied

to solve small (e.g., less than 80 atoms in the asymmetric unit)

light-atom structures (i.e., no atoms heavier than O). No

attempt has been made so far to solve medium-size (i.e., from

80 to 400 non-H atoms in the asymmetric unit) light-atom

structures. In this paper we:

(a) characterize the interatomic peak distribution in a C0

map and its relationship with Patterson interatomic peaks;

(b) describe a new procedure for ab initio phasing, involving

the C0 map rather than the Patterson map; and

(c) apply the new procedure to a large set of small- and

medium-size structures, so demonstrating the greater effi-

ciency of the new method.

We will not consider in this paper the application of the C0

map to proteins, because it requires the use of some supple-

mentary filtering techniques and will be described in a sepa-

rate paper. However, as a general consequence of the results

described here, Patterson deconvolution techniques, possibly

integrated with the use of the C0 map, should be considered as

the most versatile tool for the solution of the crystallographic

phase problem. This conclusion is supported by the following

considerations: they succeed even in the case of light-atom

structures (as shown in this paper), in the case of powder data

(Burla et al., 2007), and in the case of large proteins containing

heavy atoms (up to 7900 atoms in the asymmetric unit with a

data resolution of 1.65 Å, or also at 1.92 Å resolution for a

protein with about 1300 non-H atoms in the asymmetric unit)

(Caliandro et al., 2008).

3. Patterson deconvolution and implication
transformations

To better clarify the role of C0 as powerful substitute for the P

map, we recap the most advanced procedures aiming at

deconvolving the Patterson function by using implication

transformation and superposition methods. The typical

procedure may be essentially summarized in three steps:

(i) Given the symmetry operator Cs, the related implication

transformation Is(r) is calculated: it is a function of the atomic

position r defined over the corresponding Harker section.

Is rð Þ ¼ P r� Csrð Þ=ns; ð10Þ

where P is the Patterson function and ns is the number of

symmetry operators that give rise to the same Harker section

(Harker, 1936).

(ii) The symmetry minimum function is calculated, given by

SMF rð Þ ¼ min
m

s¼1
½Is rð Þ�; ð11Þ

where min indicates that SMF assumes in r the minimum

among the values of the m independent functions Is rð Þ.

(iii) The largest SMF peaks are used in turn to calculate the

minimum superposition function

SðrÞ ¼ min½Pðr� rqÞ; SMFðrÞ�: ð12Þ

Sometimes more than one superposition vector is used,

according to

SðrÞ ¼ min½Pðr� rqÞ; . . . ;Pðr� rnÞ; SMFðrÞ�: ð13Þ

From now on we will refer to the vectors rq; . . . ; rn as to pivot

vectors, because they regulate the map overlap. As stated in

x2, the above techniques have been recently revisited, with a
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dramatic increase in efficiency (Caliandro et al., 2008). The key

to the improvements is in the following two additional steps:

(iv) Efficient filtering algorithms are applied to break down

the additional crystallographic symmetry present in the func-

tion SMF and the residual Patterson symmetry in the S(r) map.

(v) Subsequent cycles of electron density modification–

difference electron density modification (EDM–DEDM) are

automatically applied to the current maps to obtain higher-

quality model maps.

In the next sections we will describe a simple algebra

showing the potential advantages obtainable by replacing

the Patterson by the function C0 in step (iii) of the algorithm

described above. The new algorithm for Patterson deconvo-

lution will be described in x6 and its practical applications

in x7.

4. C, C000 and P maps

Let us analyze, in the C, C0 and P maps, those features of the

interatomic vectors that are particularly relevant for the

application of implication transformation and superposition

methods. In the algebraic calculations below we will empha-

size the role of the heavy atoms, because they are often part of

the model structure. The relations we will obtain are, however,

quite general (the reader can set the number of heavy atoms

equal to zero in our expressions if the structure is composed

only of light atoms). We will suppose that:

(a) the target unit cell contains N atoms, NH of which are

heavy atoms;

(b) the positions of the heavy atoms are known, with

negligible errors, and constitute the model;

(c) rHi, i ¼ 1; . . . ;NH are the heavy-atom positions and rl�

are the light-atom positions. We order the light atoms in such

a way that they follow the heavy-atom list (i.e., l goes from

NH + 1 to N).

We want to obtain, under the above hypotheses, a more

complete model of the target structure by replacing, in

equations (12) and (13), Pðr� rqÞ by Cðr� rqÞ or C0ðr� rqÞ.

For ideal diffraction data, Patterson peak positions will be

the union of the following three sets:

frHi � rHj; i; j ¼ 1; . . . ;NHg ð14aÞ

f	ðrHi � rl�Þ; i ¼ 1; . . . NH; � ¼ NH þ 1; . . . ;Ng ð14bÞ

frl� � rl�; �; � ¼ NH þ 1; . . . ;Ng: ð14cÞ

In this order they correspond to heavy–heavy, heavy–light and

light–light atom distances.

Let us now shift the Patterson map by the pivot vector rHq:

we should obtain a noisy image of the structure. The following

peak sets arise:

frHi � rHj þ rHq; i; j ¼ 1; . . . ;NHg ð15aÞ

f	ðrHi � rl�Þ þ rHq; i ¼ 1; . . . NH; � ¼ NH þ 1; . . . ;Ng

ð15bÞ

frl� � rl� þ rHq; �; � ¼ NH þ 1; . . . ;Ng: ð15cÞ

Emphasizing the case j = q for the subset (15a) and the case i =

q for the subset (15b) allows us to rewrite the peaks (15) as

frHi; i ¼ 1; . . . ;NH; rHi � rHj þ rHq; i; j ¼ 1; . . . ;NH;

j 6¼ qg ð16aÞ

frl�; � ¼ NH þ 1; . . . ;N; ðrl� � rHiÞ þ rHq; i ¼ 1; . . . ;NH;

i 6¼ q; � ¼ NH þ 1; . . . ;N; ðrHi � rl�Þ þ rHq;

i ¼ 1; . . . NH; � ¼ NH þ 1; . . . ;Ng ð16bÞ

frl� � rl� þ rHq; �; � ¼ NH þ 1; . . . ;Ng: ð16cÞ

If the peaks (16) are overlapped with the SMF map, the set

(16a) would provide the heavy-atom substructure plus noise,

the set (16b) would generate all the light-atom positions plus

noise, and the set (16c) would produce only noise.

Let us now describe what we should obtain if the C map is

shifted by the pivot vector rHq. The interatomic vectors

present in the C map will be the union of two sets: according to

the chosen enantiomorph [which depends on whether in

equation (7) we use exp ið’h � ’phÞ or exp ið’ph � ’hÞ] the

following sets arise (see Appendix A):

frHi � rHj; i; j ¼ 1; . . . ;NHg [ frl� � rHi; j ¼ 1; . . . ;NH;

� ¼ NH þ 1; . . . ;Ng ð17aÞ

or

frHi � rHj; i; j ¼ 1; . . . ;NHg [ frHi � rl�; j ¼ 1; . . . ;NH;

� ¼ NH þ 1; . . . ;Ng: ð17bÞ

The reader may notice that, in accordance with Appendix A,

the heavy-atom–heavy-atom distances (more generally

speaking, the distances between the atoms included in the

model) constitute a centric set, even if the target space group

is acentric, while the distances between heavy and light atoms

form an acentric set. In our examples we will comply with

(17a).

If the heavy-atom position rHq is added to the interatomic

vectors in equations (17), we obtain the following vectorial

sets:

frHi; i ¼ 1; . . . ;NH; rHi � rHj þ rHq; i; j ¼ 1; . . . ;NH;

j 6¼ qg ð18aÞ

frl�; � ¼ NH þ 1; . . . ;N; ðrl� � rHiÞ þ rHq; i ¼ 1; . . . ;NH;

i 6¼ q; � ¼ NH þ 1; . . . ;Ng: ð18bÞ

We observe: (i) the set (18a) provides the heavy-atom sub-

structure plus the same amount of noise included in the set

(16a); (ii) the set (18b) generates all the light-atom positions,

but less noise than in the set (16b); (iii) the set (16c), corre-

sponding to light–light interatomic vectors, is absent when the

C map is used.

As a consequence, the integration of the C map in the

superposition method may offer a model structure less noisy

than the Patterson map. Unfortunately, the C map is unknown

during the phasing process, but we may replace it by its

approximation: the C0 map. If m is a good approximation of

cosð’� ’pÞ for a sufficiently large set of reflections (for the
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moment we will assume that this condition is satisfied), then

the C0 peaks will be located at

frHi � rHj; i; j ¼ 1; . . . ;NHg [ f	ðrl� � rHiÞ; j ¼ 1; . . . ;NH;

� ¼ NH þ 1; . . . ;Ng: ð19Þ

By adding the heavy-atom position rHq to the interatomic

vectors in (19) we obtain

frHi; i ¼ 1; . . . ;NH; rHi � rHj þ rHq; i; j ¼ 1; . . . ;NH;

j 6¼ qg ð20aÞ

frl�; � ¼ NH þ 1; . . . ;N; rl� � rHi þ rHq; i ¼ 1; . . . ;NH;

i 6¼ q; � ¼ NH þ 1; . . . ;N; rHi � rl� þ rHq;

i ¼ 1; . . . ;NH; � ¼ NH þ 1; . . . ;Ng: ð20bÞ

Let us compare sets (20), obtained by the use of the C0 map,

with sets (16) obtained by using the P map:

(i) (20a) and (20b) coincide with (16a) and (16b), respec-

tively. Therefore both set (20) and set (16) provide the atomic

positions of the full target structure, with the same amount of

noise.

(ii) The C0 map has no noise term corresponding to (16c).

This property may be very important when the target structure

contains a large number of light atoms, as frequently occurs

for medium-size structures and for proteins.

This superior characteristic of the C0 map requires that one

condition is satisfied: the good quality of the model. To clarify

this point, let us summarize the results of our algebraic

analysis and combine them with the conclusions described in

Appendix A. The C map may be calculated only if the cosines

cosð’� ’pÞ are known: it is acentric if the target structure is

acentric, with symmetry defined by the symmorphic variant of

the space group of the target. Since the target phases are

usually unknown, cosð’� ’pÞmay be replaced by its statistical

estimate m. The corresponding map is now the C0 map,

centrosymmetric, with the same space group as the Patterson

map. The C peaks (ideally) are also peaks of the C0 map.

The C0 map, ideally, will only show interatomic vectors

relating the Np atoms to the N atoms of the target, regardless

of the value of Np. The reader should not think that this

property is guaranteed by the condition that m is a good

approximation of cosð’� ’pÞ: this conclusion is clearly

demonstrated in Appendix A. As a consequence, the property

will also hold when Np is very small, for example when Np is

equal to one or two (see the practical applications described in

x7). However, if Np is very small, one wrong atomic position in

the model structure may lead to wrong calculated amplitudes

jFpj and therefore to wrong C0 maps. The assumption that the

quality of the model is a basic condition for the success of the

C0-based procedure is therefore demonstrated.

There is another question which deserves to be discussed:

are the C or the C0 maps new variants (weighted) of the

Patterson functions? The answer may be summarized as

follows:

(i) The C map involves phases of the target and of the

model structures, and therefore cannot be considered a variant

of the Patterson function. Indeed, the C-map symmetry does

not coincide with the Patterson symmetry.

(ii) The C0 map is part of the Patterson map, showing only

model–target vectors. The weight m privileges the structure

factors with large observed and calculated amplitudes. From a

formal point of view, the C0 function may be considered as a

special Patterson function with weight m|Fp|/|F|, but this

equivalence does not grasp the essence of the C0 map. Indeed,

while the Patterson function is calculated from the observa-

tions, the C0-map calculation needs a model, and therefore

corresponding amplitudes and phases.

(iii) Some similarity exists between C0 and the sum function

(Buerger, 1959), where a weight is necessary: such a weight,

however, is a complex number which is calculated from the

translational vectors used for the image superposition.

The above considerations describe the ideal properties of

the C0 map. In practice, m is only a statistical estimate of

cosð’� ’pÞ: therefore the light-atom–light-atom peaks may be

present in the C0 map, but their intensity is expected to be

much smaller compared with the corresponding peaks in the

Patterson map.

A further property makes the use of the C0 map more

interesting: while the Patterson map is invariant during the

phasing process, the C0 map changes with the current model:

we will show that this characteristic is crucial for a successful

crystal structure determination.

A simple graphical demonstration of the above described

algebra is shown in Fig. 1: it is very didactical, though not

realistic, but it is useful for checking the properties of the

vectorial sets. In Fig. 1(a) the target electron density is shown
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Figure 1
(a) A three-atom two-dimensional target structure: plane group pg; (b)
the corresponding Patterson map, plane group p2mm; (c) the C map
when the S atom is the only atom in the model structure. Its symmetry
group is pm, but the Patterson S-atom substructure satisfies the p2mm
symmetry; (d) the corresponding C0map, with p2mm symmetry.



at 1 Å data resolution: a two-dimensional unit cell is used, with

a = b = 20 Å, plane group pg, S is at (0.1, 0.1), and O atoms are

at (0.165, 0.302) and (0.302, 0.185). In Fig. 1(b) the Patterson

map is depicted, plane group p2mm. In Fig. 1(c) the C map is

shown when S is the only atom in the model: the map is

acentric, space group pm, while the component substructure

corresponding to S–S distances is centric, with plane group

p2mm (since the model substructure contains only one

symmetry-independent atom, the resulting vector substruc-

ture consists of two Harker peaks). The peaks corresponding

to light-atom–light-atom distances are absent. The C0 map is

shown in Fig. 1(d): its plane group is p2mm, and the intensities

corresponding to O–O distances are very weak.

An additional two-dimensional example (simulating a

centric arrangement of the atoms in three dimensions) is

shown in Fig. S1:1 a two-dimensional unit cell is used, with a =

b = 20 Å, plane group p2, with S at (0.1, 0.1), and O atoms at

(0.1, 0.3) and (0.3, 0.1). In this case P, C and C0 maps show the

same p2 symmetry: C and C0 are more closely related, and

show very faint peaks corresponding to O–O distances.

In x2 we anticipated that the new phasing procedure,

exploiting the properties of the C0 map, may succeed even

when applied to light-atom structures. We therefore need to

generalize to light-atom structures the algebraic results

described above, so far tailored for structures containing

heavy atoms. For this we will suppose that the current model is

composed of NH light atoms (instead of by NH heavy atoms).

Then:

(a) in a C map the vectors between model atoms will show

the Laue symmetry, the vectors between model and non-

model atoms should satisfy the symmorphic variant of the

target space group and, finally, the vectors between non-model

atoms and non-model atoms should be absent; and

(b) in a C0 map the vectors between model atoms and the

vectors between model and non-model atoms should satisfy

the Laue symmetry, and the vectors between non-model atoms

and non-model atoms should be weak or absent.

5. The C000 map deconvolution

The standard Patterson superposition is usually carried out

by equations (11)–(13). In our applications (13) was not

effective: the reasons are the following. Multiple map super-

position, as symbolically represented in equation (13), has

been attempted by several workers: the risk, frequently met in

the practical applications, is that the resulting SðrÞ map

becomes poorer and poorer when the number of overlapped

maps increases. Indeed, as an effect of resolution bias and of

the vector overlap in the Patterson map, Patterson peaks are

shifted from their ideal positions and the symmetry minimum

function may vanish even in sites corresponding to heavy-

atom positions in the electron-density map. A straightforward

implementation of the superposition technique, based on the

shifted C0 map rather than on the shifted Patterson map,

would lead to

SðrÞ ¼ min½C0ðr� rqÞ; SMFðrÞ�: ð21Þ

To more clearly compare the expected features of (12) and

(21) we observe:

(i) adding rq to the set of interatomic vectors (19) provides

the set (20): target positional vectors and noise are obtained,

as described in x4;

(ii) if equation (12) is applied, the noise reduction may

not be equally efficient. Indeed, the P map always contains,

particularly for large structures, a huge amount of noise

corresponding to light-atom distances.

Some graphical examples (Fig. 2 and Figs. S2, S3) can

illustrate the potential superiority of the C0-map-based

deconvolution: we will use the ideal structures depicted in

Figs. 1(a) and S1(a).

In Fig. 2(a) we show the SMF map corresponding to the

two-dimensional structure illustrated in Fig. 1(a). According

to the planar group symmetry pg, the SMF peaks are of

columnar type. The four strongest columns correspond to the

S–S Harker peaks: the number four is due to the origin

ambiguity along the x axis. We freely choose for the x coor-

dinate of the S atom that corresponding to the column high-

lighted by the yellow arrow: the y coordinate is free, and we

choose, for simplicity, the true y coordinate of the sulfur. In

Fig. 2(b) we show the Patterson map shifted by rq ¼ rS; the

minimum superposition functions (12) and (21) are shown,

respectively, in Figs. 2(c) and 2(d). It can be noted that in both
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Figure 2
(a) SMF map corresponding to the structure illustrated in Fig. 1(a); (b)
Patterson map shifted by rS (rS is the sulfur position, chosen along the
columnar peak highlighted by the yellow arrow). For simplicity, the y
coordinate of the sulfur has been arbitrary fixed to the true one; (c, d)
symmetry minimum function obtained according to equations (12) and
(21), respectively.

1 Supplementary material for this paper is available from the IUCr electronic
archives (Reference: PC5015). Services for accessing this material are
described at the back of the journal.



cases the full structure is obtained but some false peaks are

present, and using (12) or (21) leads to equivalent results.

In Fig. S2 we show the results obtained by applying the

Patterson deconvolution to the target structure depicted in

Fig. S1(a). Since the strongest Patterson peak, say the S–S

peak, is at (0.2, 0.2), the SMF map will show a strong peak at

(0.1, 0.1) (see Fig. S2a), which is used a pivot vector rq ¼ rS in

map superposition. In Fig. S2(b) we show the Patterson map

shifted by rS and in Figs. S2(c) and S2(d) the minimum

superposition functions (12) and (21), respectively: the full

structure is again obtained with some false peaks, but the use

of (21) provides a cleaner map.

In more detail, we observe:

(a) The SðrÞ maps obtained via equation (12) (say Figs. 2c

and S2c) and equation (21) (say Figs. 2d and S2d) have very

sharp peak domains, a symptom of partial peak overlap at the

atom sites (even in this ideal condition).

(b) None of the SðrÞ maps is completely deconvoluted,

because in all the cases a double superposition is calculated: a

triple one would be necessary to obtain a single image of the

structure.

(c) The larger efficiency of the C0-map-based deconvolution

with respect to that based on the Patterson map is expected to

increase with the structure complexity, where the disturbance

from light-atom–light-atom vectors is larger: this is confirmed

by the experimental tests described in x6.

An alternative approach can be also followed, by replacing

the SMF with the atomic minimum superposition (AMS)

introduced by Simpson et al. (1965) and Pavelčı́k (1986). Let rq

be the pivot vector and C�rq a position symmetry equivalent to

rq (i.e., C� 6¼ I is a symmetry operator of the target space

group). Then the AMS is calculated as

SðrÞ ¼ min
m

�¼2
½Pðr� rqÞ;Pðr� C�rqÞ�; ð22Þ

which can be modified (by introducing the C0 map) according

to

SðrÞ ¼ min
m

�¼2
½C0ðr� rqÞ;C0ðr� C�rqÞ�: ð23Þ

The reader should observe that in equation (23): (i) in

accordance with the reasons mentioned above, the two C0

maps are not superimposed with the SMF map: this should

only be used for finding the atomic positions to be employed

as pivots; (ii) overlapping maps by using pivot vectors which

are related by symmetry reduces the risk of obtaining poor

SðrÞ functions: such a risk is higher if two symmetry-

independent pivot vectors are used. The deconvolutions

performed according to (22) and (23) are reported in Figs.

S3(a,c) and S3(b,d) for the pg and p2 examples, respectively.

The resulting S maps are no longer constituted by sharp peaks:

again, using (22) or (23) leads to equivalent results for the pg

case, using (23) provides a cleaner map for the p2 case.

The use of (22) and (23) implies a large degree of map

superposition for high-symmetry space groups, with the

consequent risk of obtaining a final map that is too poor. To

overcome this problem, we preferred to obtain a partial

decomposition and to use only two pivot vectors related by

symmetry, according to

SðrÞ ¼ min½Pðr� rqÞ;Pðr� C2rqÞ�; ð24Þ

SðrÞ ¼ min½C0ðr� rqÞ;C0ðr� C2rqÞ�: ð25Þ

As we shall see in the next section, equations (12), (21), (24)

and (25) are tools of our deconvolution algorithm.

6. The new deconvolution algorithm

Using the C0 map in superposition techniques requires a

preliminary condition: a model structure should already be

available. That may be achieved (staying with direct-space

techniques) in a simple way. First, the Patterson map is

computed, then the implication transformation IsðrÞ as defined

by equation (10) is obtained, then the symmetry minimum

function SMFðrÞ as defined by equation (11) is derived, from

which a starting model may be extracted. This corresponds to

the block SMF in Fig. 3, where a schematic view of our algo-

rithm and of all the phasing procedure is given. Owing to the

dynamic nature of the C0 map, the quality and the size of the

model may change during the deconvolution process. To take

into account this feature, we designed a three-step algorithm,

in which the SðrÞ map obtained at a given step is used to

generate a new C0 map to be used in the next step (see Fig. 3a).

Step A submits the coordinates and thermal factor of the

pivot peak rq obtained in the block SMF to least-squares

refinement (only if an atom heavier than Ca is present in the

structure) and applies equation (12).

In step B the highest peak of the S(r) map obtained at the

end of step A, possibly submitted to least-squares refinement,

is chosen as pivot peak rp: the corresponding peak is used as a

model to build the C0 map. Equation (21) is then applied to

obtain a new S(r) map, where interatomic vectors corre-

sponding to distances between atoms not in the model have

reduced intensity.

In step C two peaks are selected from the SðrÞmap obtained

at the end of step B: rp1, the highest one, and rp2, chosen as the

highest peak at least 2 Å away from rp1 (to avoid taking a

ripple of rp1). rp1 and rp2 are used as a model for building a

further C0 map, which, shifted by rp1, is overlapped with the

SMF map according to equation (21). The resulting SðrÞmap is

subjected to cycles of EDM in which filtering algorithms are

applied to break down the residual Patterson symmetry. They

have not been changed with respect to our previous imple-

mentation (Caliandro et al., 2007): they were based on the

properties of the FF and of the Patterson maps. The only

modification introduced here is that now the C0 map calcu-

lated in step C plays the role of the Patterson map in the old

algorithm.

The algorithm described so far may also be applied to the

space group P1, provided that the SMF map is replaced by the

Patterson map in equations (12) and (21).

The above algorithm has been embedded in the SIR2011

framework for ab initio crystal structure solution (Burla et al.,

2012), as sketched in Fig. 3(b). The trials progressively
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obtained are ordered by a figure of merit (FOM) (Burla et al.,

2004), and then submitted to phase refinement, which is based

on cycles of EDM and DEDM, followed by routines that

interpret the electron-density map in terms of a structural

model. The RELAX procedure (Burla et al., 2005) is also used

at this stage for the most promising trials. The structural model

is then refined by diagonal least squares (block LSQ in Fig. 3),

after which the crystallographic residual is calculated. If it falls

below a given threshold (0.25 by default), the program stops.

If the solution is not obtained at the end of the whole

procedure, a second iteration is performed using a different

version of the deconvolution module: equations (24) and (25)

are used in steps A and B instead of equations (12) and (21),

respectively.

A last point deserves to be clarified. The reader has

certainly noticed that we choose a one- or two-atom

symmetry-independent model structure, while the target

structure may contain a large number of atoms. According to

Appendix A, the C0 map will show only the interatomic

vectors relating model to target atoms, and therefore is a small

or a large part of the Patterson map depending on whether Np

is small or large. If Np is very small, the number of interatomic

vectors in the unit cell is much smaller than in the Patterson

map: this strongly reduces the vector overlap, improves the

peak location and, consequently, minimizes the error in the

model structure.

7. Applications

Any new algorithm should be checked by a large number of

test structures to prove its general applicability. We used a

total of 188 test structures, whose code names, space groups,

chemical compositions and references are listed as supple-

mentary information (Tables S1 and S2). To obtain statistical

figures summarizing the results of the phasing process, we

divided the set of test structures into subsets according to the

number of non-H atoms in the asymmetric unit (Nasym) and

their heavier atomic species (L = light, H = heavy): for prac-

tical usefulness an atom is considered heavy if its atomic

number is larger than that of Ca. The number of test structures

for each subset are reported in Table 1, where we also show

the average phasing efficiencies of two deconvolution

methods, the first C0-based (as described in x5), the second

Patterson-based, carried out by using equation (12). For each

structure subset EffC0 and EffP are the ratio (number of solved

structures)/(number of structures) when the C0-based and the

Patterson-based algorithms are used, respectively. In Fig. 4 we

show, for the C0-based algorithm and for the H and L subsets,

the average values of: the crystallographic residual (Rcr), the

sequential number of the pivot peak for which the solution is

obtained (np), and the cpu time necessary to reach the solution

(t in min) versus the average values of Nasym (hNasymi). The

averages have been calculated over the test structures

contained in each of the four subsets considered in Table 1.

It can be noted that:

(i) The deconvolution algorithm based on the C0 map is

more efficient than that based on the Patterson map for

structures containing only light atoms, and in particular for
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Figure 3
Schematic view of the new Patterson deconvolution algorithm in the first (a1) and second (a2) iteration and of the ab initio structure solution strategy of
SIR2011 (b).

Table 1
Statistics for the test structures.

Values are grouped according to the number of non-H atoms in the
asymmetric unit (Nasym) and the presence or absence of atoms heavier than Ca
(H/L). Entries correspond to the number of structures in each class (Num),
and the phasing efficiencies of the C0-based (EffC 0) and of the Patterson-based
deconvolution (EffP) algorithms

H L

Num EffC 0 EffP Num EffC 0 EffP

Nasym 
 20 23 100 100 14 100 100
20 < Nasym 
 80 21 100 100 45 100 96
80 < Nasym 
 150 14 100 100 46 100 93
150 < Nasym 4 100 100 21 90 81



difficult cases, i.e. for structures with Nasym > 150. If heavy

atoms are present, both algorithms work with full efficiency.

(ii) On average, the crystallographic residual does not

depend on the structure complexity within the range of Nasym

considered.

(iii) For structures containing heavy atoms, the solution is

obtained by the very first (higher) SMF peaks, indicating that

the true heavy-atom position is always found in the very early

stage of the phasing procedure. As a consequence, the cpu

time needed to reach the solution simply scales with the size of

the structure. The efficiency of the deconvolution algorithm

does not depend on the size of the structure in this case.

(iv) For structures containing only light atoms, a steady

increase of the pivot peak order number as a function of the

structure complexity is seen, indicating that locating light

atoms in their true positions by superposition techniques is

more and more challenging as the size of the structure

increases. Therefore the cpu time increases with Nasym more

rapidly than for the heavy-atom case.

Most of the medium-size test structures are a challenge for

any ab initio phasing program, especially if they include only

light atoms: thus the results obtained for the L structures with

Nasym > 150 and no atom heavier than O are reported in Table

2. The efficiency of the algorithm does not seem to depend on

the crystal symmetry. The only structures resistant to the new

phasing method are ceho2z and cemc2z: the failure may be

attributed to the large measurement errors for the high-

resolution spots (Rint > 45% for data at atomic resolution),

which strongly affect the Patterson or C0 map quality. A

unique structure (cyclo_bnz) has been solved by iterating

the whole decomposition procedure (part of the standard

approach): after having explored all the 23 SMF peaks by

using the SMF approach, for a total of 1472 s, the AMS

approach took 180 s to reach the solution. It is worth noting

that the AMS approach is less efficient (it has 5 failures), but it

constitutes an alternative to the SMF approach.

8. Conclusions

The C map, the Fourier transform of the product

jFhFphj exp ið’h � ’phÞ, has been crystallographically char-

acterized, together with its centric modification C0, the

Fourier transform of the product mhjFhFphj. The C0 map,

easily computable as soon as a model is available, shows,

with reduced intensity, peaks corresponding to interatomic

vectors between atoms not belonging to the model. This

property may be very useful when the C0 map (instead of the

Patterson map) is combined with implication transformation

methods and superposition techniques, because it is less

subject to noise.

Our applications show that superposition methods,

combined with the C0 map, can solve small- and medium-size

structures (up to about 400 non-H atoms in the asymmetric

unit) even when no heavy atom (i.e., no atom heavier than O)

is present. This result dramatically changes the common

judgement about the versatility of Patterson techniques. In

International Tables for Crystallography Volume B, Rossmann

& Arnold (1993) write

The feasibility of structure solution by the heavy-atom method

depends on a number of factors which include the relative size of

the heavy atom and the extent and quality of the data. A useful

rule of thumb is that the ratio

r ¼

P
heavy Z2

P
light Z2

should be near unity if the heavy atom is to provide useful

starting phase information (Z is the atomic number of an atom).

The condition that r > 1 normally guarantees interpretability of

the Patterson function in terms of the heavy-atom positions.
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Figure 4
For H and L structures we show, versus hNasymi: (a) the average values of
the crystallographic residual Rcr; (b) the pivot peak sequential order np at
which the solution has been obtained; and (c) the cpu time (t in min)
needed to reach the solution.



They also state that the rule is rather conservative and quote

as an outstanding example vitamin B12 with formula

C62H88CoO14P (Hodgkin et al., 1957), which gave r = 0.14 for

the Co atom alone.

Our application clearly shows that heavy atoms are no

longer strictly necessary for the success of Patterson–C0

procedures, which may successfully be applied also to struc-

tures with atoms not heavier than O. This result makes

Patterson techniques probably the most versatile phasing

method, given also their ability to solve protein structures with

heavy atoms up 7900 atoms in the asymmetric unit with a data

resolution of 1.65 Å (Caliandro et al., 2008).

APPENDIX A
Symmetry properties of the C map

The symmetry properties of the C map may be obtained by a

simple analysis of the product FhFph. In accordance with x2, we

will suppose that the unit cells of the target and of the model

structure contain N and Np atoms, respectively, and that t and

tp are the corresponding numbers of atoms in the asymmetric

units. Let C ¼ ðR;TÞ be the generic symmetry operator of the

space group and m its order; then

FhF�ph ¼
Pt

i¼1

Ptp

j¼1

Pm

s;k¼1

fi fj exp½2�ih � ðCsri � CkrpjÞ�: ð26Þ

We subdivide the summation over the target atoms into two

parts:

FhF�ph ¼
Ptp

i¼1

Ptp

j¼1

Pm

s;k¼1

fi fj exp½2�ih � ðCsri � CkrpjÞ�

þ
Pt

i¼tpþ1

Ptp

j¼1

Pm

s;k¼1

fi fj exp½2�ih � ðCsri � CkrpjÞ�: ð27Þ

Both terms on the right-hand side of equation (27) involve

acentric distributions of interatomic distances. However, if the

model and target structures are highly correlated, the first

term is pseudo-centric: it becomes completely centric when D

= 1 (that is, when rpj � rj; j ¼ 1; . . . ;Np). In this case

FhF�ph ¼
Ptp

i¼1

Ptp

j¼1

Pm

s;k¼1

fi fj exp½2�ih � ðCs � CkÞrpj�

þ
Pt

i¼tpþ1

Ptp

j¼1

Pm

s;k¼1

fi fj exp½2�ih � ðCsri � CkrpjÞ�: ð28Þ

This feature was not noticed in the symmetry analysis

described by Carrozzini et al. (2010). Let us now derive the

symmetry of the product FhF�ph, and therefore of the C map.

Defining

Cs ¼ CkC� ¼ ðRkR�;RkT� þ TkÞ

gives

FhF�ph ¼
Pt

i¼1

Ptp

j¼1

Pm

s;k¼1

fi fj exp½2�ihRk � ðC�ri � rpjÞ�: ð29Þ

If the model is highly correlated with the target structure,

equation (29) may be approximated by

FhF�ph ¼
Ptp

i¼1

Ptp

j¼1

Pm

s;k¼1

fi fj exp½2�ihRk � ðC�rpi � rpjÞ�

þ
Pt

i¼tpþ1

Ptp

j¼1

Pm

s;k¼1

fi fj exp½2�ih � ðCsri � CkrpjÞ�: ð30Þ

Each interatomic vector in equations (29) or (30) depends on

the space-group symmetry of the target structure, but the

symmetry of the interatomic vectors obeys that of the corre-

sponding symmorphic space group. The reader, however,

should notice that, according to equation (28), the interatomic

vectors among model atoms will show the symmetry of the

Laue group, because their distribution is centric.
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